High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels
نویسندگان
چکیده
The stability of the retained austenite has been studied in situ in low-alloyed transformation-induced-plasticity (TRIP) steels using high-energy X-ray diffraction during tensile tests at variable temperatures down to 153 K. A detailed powder diffraction analysis has been performed to probe the austenite-to-martensite transformation by characterizing the evolution of the phase fraction, load partitioning and texture of the constituent phases simultaneously. Our results show that at lower temperatures the mechanically induced austenite transformation is significantly enhanced and extends over a wider deformation range, resulting in a higher elongation at fracture. Low carbon content grains transform first, leading to an initial increase in average carbon concentration of the remaining austenite. Later the carbon content saturates while the austenite still continues to transform. In the elastic regime the probed {hk l} planes develop different strains reflecting the elastic anisotropy of the constituent phases. The observed texture evolution indicates that the austenite grains oriented with the {200} plane along the loading direction are transformed preferentially as they show the highest resolved shear stress. For increasing degrees of plastic deformation the combined preferential transformation and grain rotation results in the standard deformation texture for austenite with the {111} component along the loading direction. The mechanical stability of retained austenite in TRIP steel is found to be a complex interplay between carbon concentration in the austenite, grain orientation, load partitioning and temperature. 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Microstructural control of the austenite stability in low-alloyed TRIP steels
We have performed in-situ magnetization and high-energy X-ray diffraction measurements on two aluminum-based TRIP steels from room temperature down to 100 K in order to evaluate amount and stability of the retained austenite for different heat treatment conditions. We have found that the bainitic holding temperature affects the initial fraction of retained austenite at room temperature but does...
متن کاملIdentification of Retained Austenite, Ferrite, Bainite and Martensite in the Microstructure of TRIP Steel
Transformation induced plasticity (TRIP) steels have a vast application in automotive industry because of theirhigh strength, high ductility and hence excellent energy absorption capacity. These characteristics of TRIPsteels are due to the existence of retained austenite in their microstructures in the ambient temperature, whichtransforms to the martensite phase during deforma...
متن کاملCharacterization of individual retained austenite grains and their stability in low-alloyed TRIP steels
In situ three-dimensional (3-D) X-ray diffraction experiments have been performed at a synchrotron source on low-alloyed multiphase TRIP steels containing 0.25 wt.% Si and 0.44 wt.% Al and produced with different bainitic holding times, in order to assess the influence of the bainitic transformation on the thermal stability of individual austenite grains with respect to their martensitic transf...
متن کاملThe Effect of Two-stage Heat Treatment Temperatures on Initial and FSSWed Properties of TRIP Steels
In this paper, a 0.2 C–1.6 Mn–1.5 Si wt. % TRIP-aided cold-rolled steel sheet was fabricated and the optimal heat treatment conditions (Intercritical Annealing “IA” and Bainitic Isothermal Transformation “BIT”) were investigated to maximize the volume fraction and stability of the retained austenite. The effects of temperature on IA (770, 790 and 810 ºC) and BIT (330, 350 and 370 <su...
متن کاملMechanical Stability of Retained Austenite in the Nanostructured, Carbide Free Bainitic Steels During Tensile Testing and Cold Rolling Process
Terms of service of the steels with retained austenite in the microstructure, is severely depended on the stability of austenite during the course of deformation. The present work aims to evaluate the mechanical stability of austenite in nanostructured, carbide free bainitic steels during tensile testing and cold rolling process. To achieve the microstructure with retained austenite, the steel ...
متن کامل